<P>Çб³ ¼ö¾÷ ¼÷Á¦Àä, Àι®°è Ãâ½ÅÀ̶ó ±×·±Áö ³Ê¹« ¾î·Æ³×¿ä.</P> <P>ÁÖº¯¿¡ ¹®ÀÇ µå¸± °÷ÀÌ ¾ø¾î¼ ÀÌ·¸°Ô ¼öÇлç¶û ȸ¿øºÐµé²² ¹®Àǵ帳´Ï´Ù. µµ¿ÍÁÖ¼¼¿ä ¤Ð¤Ð</P> <P> </P> <P>1. f(0)=0 ÀÌ°í x>0ÀÏ ¶§ f''(x) > 0 À̸é, x > 0 ÀÏ ¶§ f(x)/x ´Â Áõ°¡ÇÔ¼öÀÓÀ» Áõ¸íÇ϶ó.</P> <P> </P> <P>2. ¹ÌºÐÀÇ Æò±Õ°ªÁ¤¸®¸¦ ÀÌ¿ëÇÏ¿© ´ÙÀ½ </P> <P><COMMENT class=MATH>[0]#wh4/33.9`10.7/11,[1]{underline{1}_{48} `lt` {3}^^sqrt{28} - 3 `lt` `underline{1}_{27}}</COMMENT></P> <P>À» º¸À̶ó.</P> <P> </P> <P>3. ±¸°£ [a,b]¿¡¼ Á¤ÀÇµÈ ÇÔ¼ö y=f(x)°¡ À§·Î º¼·ÏÇÏ´Ù°í ÇÏÀÚ. ÀÌ ¶§, ÀÓÀÇÀÇ a <COMMENT class=MATH>[0]#wh4/39.6`4.3/11,[1]{preceq` x1, x2, ... , xn `leq` b}</COMMENT>¿¡ ´ëÇÏ¿© ´ÙÀ¾ ºÎµî½Ä</P> <P> </P> <P><COMMENT class=MATH>[0]#wh4/59.1`8.9/11,[1]{underline{f(x1)`plus` ... `plus` f(xn)}_{n}`preceq`f(`underline{x1 `plus` ... xn}_{n})}</COMMENT></P> <P>ÀÌ ¼º¸³ÇÔÀ» º¸¿©¶ó...</P> <P> </P> <P>¾Æ, ºÎŹµå¸±°Ô¿ä..¤Ð</P>