<P><¹®Á¦>f:(0,1]¡æ<COMMENT class=MATH>[0]#wh4/4.5`4.3/11,[1]{arrow}</COMMENT>R, (1) If f(x+y)=f(x)+f(y), 0£¼x,y, x+y¡Â1<COMMENT class=MATH>[0]#wh4/31.7`4.3/11,[1]{0`lt`x, y, x`plus`y`leq`1}</COMMENT> </P> <P>(2) f is bounded on [a,b] where 0£¼a<COMMENT class=MATH>[0]#wh4/20.6`4.3/11,[1]{0`lt`a, b`leq`1}</COMMENT>, b ¡Â 1 , then f(x)=ax.</P> <P> </P> <P>ÀúÀÇ ¹«½ÄÇÑ »ý°¢À¸·Î´Â À§ÀÇ Á¶°Ç Áß bounded Á¶°Ç º¸´Ù´Â continuousÀÇ Á¶°ÇÀÌ µé¾î°¡´Â °Í ÀÌ ¿ÇÁö ¾ÊÀ»±î »ý°¢ÇÕ´Ï´Ù.</P> <P> </P> <P> <COMMENT class=MATH>[0]#wh4/21.9`7.9/11,[1]{lim_{x`arrow`0{plus}^{}}`f(x)`equal`0}</COMMENT> <img onLoad='miniSelfResize(contents_390,this); if(this.parentNode.tagName=="A"){this.onclick = "";}' src="/shop/lib/meditor/../../data/editor/1327553149.jpg">ÀÇ Áõ¸íÀº ¾î¶»°Ô µÇ´ÂÁö¿ä?</P> <P> </P> <P> ÁÁÀº ÇÏ·ç µÇ¼¼¿ä^0^</P> <P> </P>