<P>¹®Á¦ÁýÀ» Ç®´Ù°¡, Àǹ®ÀÌ µÇ´Â Á¡ÀÌ À־ä..</P> <P>1.¦¢<COMMENT class=MATH>[0]#wh4/9.2`7.8/11,[1]{vec{a`plus`b}}</COMMENT>¤Ó = ¤Ó<COMMENT class=MATH>[0]#wh4/3.7`7.8/11,[1]{vec{a}}</COMMENT>¤Ó + ¤Ó<COMMENT class=MATH>[0]#wh4/3.7`7.8/11,[1]{vec{b}}</COMMENT>¤Ó °¡ ¼º¸³Çϱâ À§ÇÑ ÇÊ¿äÃæºÐ Á¶°ÇÀº? </P> <P>À̶ó°í ¹¯´Â ¹®Á¦Àε¥, ³»ÀûÇؼ º¸¸é cos 0À̴ϱî ÇÑ Á÷¼±À§¿¡ ÀÖ´Â °Ô ¸Â´Âµ¥¿ä. (À̶§, </P> <P>º¤ÅÍ a = t * º¤ÅÍb (t>0) ¶ó°í ÁÖ¾îÁü ) º¤ÅÍ a ¿Í º¤ÅÍ b °¡ ÆòÇàÇÏ´Â Á¶°ÇÀº ¾ÈµÇ³ª¿ä? ¼·Î ½Ã¹ßÁ¡ÀÌ ¸ÂÁö ¾Ê¾Æ¼ ¾ÈµÇ´Â °Ç°¡¿ä, ¾Æ´Ô cos<COMMENT class=MATH>[0]#wh4/3.1`4.4/11,[1]{pi}</COMMENT> ÀÏ °æ¿ìµµ Àֱ⠶칮Àΰ¡¿ä?</P> <P>2. Á¤¿À°¢Çü ABCDEÀÇ Áß½ÉÀ» O¶ó°í ÇÒ ¶§, <COMMENT class=MATH>[0]#wh4/5.7`7.8/11,[1]{vec{OA}}</COMMENT> + <COMMENT class=MATH>[0]#wh4/5.7`7.8/11,[1]{vec{OB}}</COMMENT> + <COMMENT class=MATH>[0]#wh4/5.7`7.8/11,[1]{vec{OC}}</COMMENT> + <COMMENT class=MATH>[0]#wh4/6`7.8/11,[1]{vec{OD}}</COMMENT> + <COMMENT class=MATH>[0]#wh4/5.7`7.8/11,[1]{vec{OE}}</COMMENT> = <COMMENT class=MATH>[0]#wh4/3.7`7.8/11,[1]{vec{0}}</COMMENT> À̶ó°í Çϴµ¥, </P> <P>Àß ¸ð¸£°Ú¾î¿ä. ±×¸²À¸·Î ´ëÃæ ±×·ÁºÁµµ, ¿øÀ» ÅëÇؼ ÁÂÇ¥·Î Çغ¸·Á°í Çصµ, À½... Àß ³ª¿ÀÁö ¾Ê³×¿ä. Á¤ ¿À°¢ÇüÀÇ °¢ÀÌ Á» ¾î·Á¿ö¼.. ÀÌ°É <COMMENT class=MATH>[0]#wh4/5.5`7.8/11,[1]{vec{AB}}</COMMENT> +<COMMENT class=MATH>[0]#wh4/5.5`7.8/11,[1]{vec{BC}}</COMMENT> +<COMMENT class=MATH>[0]#wh4/5.7`7.8/11,[1]{vec{CD}}</COMMENT> +<COMMENT class=MATH>[0]#wh4/5.7`7.8/11,[1]{vec{DE}}</COMMENT> +<COMMENT class=MATH>[0]#wh4/5.5`7.8/11,[1]{vec{EA}}</COMMENT> =<COMMENT class=MATH>[0]#wh4/3.7`7.8/11,[1]{vec{0}}</COMMENT> ·Î ³ªÅ¸³¾ ¼ö´Â ¾øÁÒ?À½.. Á» ¼³¸íÁ» ÇØ Áֽðھî¿ä?</P> <P> </P> <P>3. Á÷¼±°ú Á÷¼± »çÀÌÀÇ ÃÖ´Ü °Å¸®¸¦ ±¸ÇÏ´Â ¹®Á¦Àä, Á¦°¡ ¾Æ¹«·¡µµ ³Ê¹« ¾î·Æ°Ô Ç®°í ÀÖ³ª ½Í¾î¼¿ä. ´Ù¸¥ ¹æ¹ýÀÌ ÀÖÀ»±î ÀÚ¹®À» ±¸ÇÕ´Ï´Ù.</P> <P>¸¸¾à, Á÷¼± l : x-2 = y-1 = z+1 , Á÷¼± m : x/3 = y = (z-2)/5 °¡ ÀÖ¾î¿ä.</P> <P>ÀÌ ÃִܰŸ®´Â, ¿ì¼± µÎ Á÷¼±¿¡ ¼öÁ÷À¸·Î Áö³ª´Â Á÷¼±ÀÇ ¹æÇâÁ÷¼±À» ±¸ÇÏ·Á°í</P> <P>(1,1,1) , (3,1,5) <COMMENT class=MATH>[0]#wh4/4.7`4.4/11,[1]{arrow}</COMMENT> a+b+c = 0 , 3a + b + 5c = 0 ±¸Çϴϱî, ¹æÇ⺤ÅÍ´Â (-2,1,1) ÀÌ ³ª¿Í¿ä.</P> <P>2) lÀÇ Á÷¼±À» x = k+2 , y = k+1 , z = k-1 </P> <P> mÀÇ Á÷¼±À» x = 3t, y = t , z = 5t+2 </P> <P> 3t -k-2 : t-k-1 : 5t + 2 - k + 1 = -2 : 1 : 1</P> <P>ÀÌ·¸°Ô ³õ°í, 3t- k-2 = -2 (t -k-1) , t-k-1 = 5t + 2 - k + 1 Ç®¸é, µÎÁ¡À» ¾Ë°ÔµÇ°í, </P> <P>µÎ Á¡ »çÀÌÀÇ °Å¸®¸¦ ¾Ë°ÔµÇ¿ä. ±Ùµ¥, Á» º¹ÀâÇÏÁÒ? ´Ù¸¥ ¹æ¹ýµµ ÀÖÀ»±î¿ä?</P> <P>°¡²û »ý°¢À» Çغôµ¥, ½Ç¸¶¸®°¡ ¾ÈÀâÇô¼¿ä...</P> <P> </P>