leejaeyul5@yahoo.co.kr http://blog.empas.com/leejaeyul5 ÀÌÀçÀ²(02-882-0830) [¿ÏÀüÇÑ ÇÇŸ°í¶ó½º ¼ö °ø½ÄÀ» ¹ß°ßÄ¡ ¸øÇÏ¿©, ºÒ¿ÏÀüÇÑ °ø½ÄµéÀ» »ç¿ë ÁßÀÌ°í, Æ丣¸¶ Á¤¸®¸¦ Áõ¸íÄ¡ ¸øÇÏ¿©, 170 ÂÊ ¹æ´ë ³ÇØÇÑ ºñÀÏ¹Ý ÃßÃø Áõ¸í»ÓÀ̸ç, 4»ö¹®Á¦¸¦ Áõ¸íÄ¡ ¸øÇÏ¿©, Àΰ£³í¸® ¾Æ´Ñ, ÄÄÇ»ÅÍ ÀÇÁ¸ ¹ÌÈ®ÀÎ Áõ¸í»ÓÀÔ´Ï´Ù. º»Àΰú ÇùÁ¶ÀÎ µéÀº ¿À·£ ¿¬±¸ ³ë·ÂÀ¸·Î, À̵鿡 ´ëÇÑ °£¸íÇÑ Áõ¸íÀ» ¹ß°ßÇÏ°í, ÀÌ ³í¹®µéÀ» Á¤ºÎ ±³À° Çа迡 Á¦¾ÈÇÏ°í ÀÖ½À´Ï´Ù.] ³í¹®1. Pythagoras FLT proof : ÇÇŸ°í¶ó½º´Â 2580 ³â, Æ丣¸¶´Â 400 ³â Àü¿¡ Ãâ»ý ÇÏ¿´½À´Ï´Ù. ¾Æ¸¶Ã߾À¸³ª ÈǸ¢ÇÑ ¼öÇÐÀÚ·Î ÀÎÁ¤¹Þ´Â Æ丣¸¶´Â, °æÀ̷οî Áõ¸í ¹ß°ß »ç½ÇÀ» ºÐ¸íÈ÷ ±â·ÏÇÏ¿© µÎ¾ú½À´Ï´Ù. ´ë´Ù¼öÀÇ Çö´ë ¼öÇÐÀÚµéÀÌ ±×¸¦ ¹ÏÁö ¾Ê°í ÀÖ¾úÀ¸³ª, ¿ì¸®´Â ±×¸¦ ¹Ï°í ÀÖÀ¸¸ç, ºÐ¸íÇÏ°Ô Áõ¸íÇÏ¿© Á¦½ÃÇÕ´Ï´Ù. ³í¹®2. 4 color problem proof : ¸ðµç ³ª¶óµéÀÌ ÀÓÀÇÀÇ ÇÑ Á¡¿¡ Á¢Çϵµ·Ï ±×·Á º¸¸é, ÀÌ ³ª¶óµéÀÌ 3°¡Áö ÀÌÇÏÀÇ »öÀ¸·Î ÃæºÐÇÏ°Ô ±¸ºÐÀÌ µÊÀ¸·Î¼, 4»ö ¹®Á¦°¡ Áõ¸íÀÌ µÉ ¼ö ÀÖ´Â °ÍÀÔ´Ï´Ù. ÇÑ Á¡À» °øÀ¯ÇÏ´Â ¸ðµç ³ª¶ó°¡ 3»öÀ¸·Î ±¸ºÐµÊÀ¸·Î, ÇÑ ³ª¶óÀÇ ±¹°æ¼± ÀϺθ¦ °øÀ¯ÇÏ´Â ÁÖº¯ÀÇ ¸ðµç ³ª¶óµéµµ ¿ª½Ã 3»öÀ¸·Î ÃæºÐÇÏ°Ô ±¸ºÐµÉ ¼ö°¡ Àֱ⠶§¹®ÀÔ´Ï´Ù. Âü°í. ¿ì¸® ³í¹®ÀÇ Ã·ºÎ ÆÄÀÏÀº ÀÌÀçÀ²-¿¥ÆĽºÄ«Æä, ´ÙÀ½Ä«Æä, ¾ßÈÄŬ·´, ³×À̹öºí·Î±×, ³×À̹öÄ«Æä, ÇÁ¸®Ã¿¼¶°ú ´ëÇѼöÇÐȸ Åä·Ð¹æ µî¿¡µµ ÀÖ½À´Ï´Ù. Pythagorean numbers and Fermat s Last Theorem proof Abstract The Pythagorean Theorem and the Pythagorean numbers are well known things. In the equation X^2+Y^2=Z^2, the numbers of X, Y, Z can be the natural numbers known as the Pythagorean numbers. But anybody seemed not analyze the imperfect forms about the Pythagorean numbers carefully. In the equation X^n+Y^n=Z^n, when n be greater or equal 3, the equation can not have non zero integer solutions. The fact was also well known thing as the Fermat s Last Theorem. The Fermat had written what he found out the proof. But anybody could not find out his proof, so nobody could know his proof. We have considered A=Z-Y, B=Z-X in the equation and found out one new perfect form about the Pythagorean numbers and a new simple and plain proof about the Fermat s Last Theorem. _________________________________________________ Key Words and Phrases MSC : 11-A99 Number Theory Y+A=X+B=Z. X-A=Y-B=Z-A-B=X+Y-Z G=(X-A)/(AB)^(1/n)=(Y-B)/(AB)^(1/n)=(Z-A-B)/(AB)^(1/n) X=G(AB)^(1/n)+A, Y=G(AB)^(1/n)+B, Z=G(AB)^(1/n)+A+B {G(AB)^(1/n)+A}^n+{G(AB)^(1/n)+B}^n={G(AB)^(1/n)+A+B}^n X+Y-Z=G(AB)^(1/n)= q[{2^(n-1)/n+¡¦+2^(2/n)+2^(1/n)}/2][{A^(n-1)B}^(1/n)+{AB^(n-1)}^(1/n)] Sentence 1. Preface In the equation X^n+Y^n=Z^n, n be the natural numbers. When n=1, the equation be X+Y=Z. When n=2, the equation be X^2+Y^2=Z^2 and the numbers of X, Y, Z can become the natural numbers known as the Pythagorean numbers. But when n be greater or equal 3, the equation X^n+Y^n=Z^n can not have non zero integers solutions. That is known as the Fermat s Last Theorem. 2. General 2-1. It is generally acknowledged to be true what the equation X^n+Y^n=Z^n can not have non zero integer solutions and what the equation X^n+Y^n=Z^n can not have non zero natural number solutions are equivalent in meaning. 2-1-1. When n be even numbers, what the equation X^n+Y^n=Z^n can not have non zero integer solutions and what the equation X^n+Y^n=Z^n can not have non zero natural number solutions are equivalent in meaning. When n be even numbers and U, V, W are natural numbers, (-U)^n+V^n=W^n U^n+V^n=W^n 2-1-2. When n be odd numbers, what the equation X^n+Y^n=Z^n can not have non zero integer solutions and what the equation X^n+Y^n=Z^n can not have non zero natural number solutions are equivalent in meaning. When n be odd numbers and U, V, W are natural numbers, (-U)^n+V^n=W^n -U^n+V^n=W^n W^n+U^n=V^n 2-2. Therefore what the equation X^n+Y^n=Z^n can not have non zero integer solutions be what the equation X^n+Y^n=Z^n can not have non zero natural number solutions. 3. Introduction 3-1. In the equation X^n+Y^n=Z^n, the mutual relation forms between A, B and X, Y, Z are A=Z-Y, B=Z-X, Y+A=X+B=Z, X-A=Y-B=Z-A-B=X+Y-Z=G(AB)^(1/n), {G(AB)^(1/n)+A}^n+{G(AB)^(1/n)+B}^n={G(AB)^(1/n)+A+B}^n, etc. In the equation X^n+Y^n=Z^n the numbers of X, Y, Z be regarded as non zero natural numbers. Y+A=X+B=Z The numbers of A, B must become non zero natural numbers. A=Z-Y, B=Z-X Therefore X-A=Y-B=Z-A-B=X+Y-Z So (X-A)/(AB)^(1/n)=(Y-B)/(AB)^(1/n)=(Z-A-B)/(AB)^(1/n) This be G. G=(X-A)/(AB)^(1/n)=(Y-B)/(AB)^(1/n)=(Z-A-B)/(AB)^(1/n) And X=G(AB)^(1/n)+A, Y=G(AB)^(1/n)+B, Z=G(AB)^(1/n)+A+B Therefore X+Y-Z=G(AB)^(1/n) and {G(AB)^(1/n)+A}^n+{G(AB)^(1/n)+B}^n={G(AB)^(1/n)+A+B}^n 350 years ago, the Fermat wrote what the proof was beautiful and wonderful thing. We believe in the Fermat. 3-2. When n=1, G=0 and when n=2, G=G=2^(1/2) but when n=3, G=F(A,B) 3-2-1. When n=1, G=0 G(AB)^(1/n)=0 (0+A)+(0+B)=(0+A+B) X=A, Y=B, Z=A+B 3-2-2. When n=2, G=2^(1/2) G(AB)^(1/n)=(2AB)^(1/2) {(2AB)^(1/2)+A}^2+{(2AB)^(1/2)+B}^2={(2AB)^(1/2)+A+B}^2 X=(2AB)^(1/2)+A, Y=(2AB)^(1/2)+B, Z=(2AB)^(1/2)+A+B 4. Pythagorean numbers form 4-1. This be one new perfect form about the Pythagorean numbers. X=(2AB)^(1/2)+A, Y=(2AB)^(1/2)+B, Z=(2AB)^(1/2)+A+B 4-1-1. A=Z-Y, B=Z-X 4-1-2. X-A=Y-B=Z-A-B=X+Y-Z=(2AB)^(1/2) 4-2. These were 3 imperfect forms about the Pythagorean numbers. First X=2A+1, Y=2A^2+2A, Z=2A^2+2A+1 Second X=4A, Y=4A^2-1, Z=4A^2+1 Third X=A^2-B^2, Y=2AB, Z=A^2+B^2 4-2-1. The inducement of the forms be uncertain. 4-2-2. The mutual relation forms between A, B and X, Y, Z are uncertain. 4-2-3. The irrational numbers of A, B are needed for some numbers of X, Y, Z as the Pythagorean numbers. 4-2-4. The changed forms between X and Y are needed for some numbers of X, Y, Z as the Pythagorean numbers. 5. Fermat s Last Theorem proof 5-1. In the equation X^n+Y^n=Z^n, when n be greater or equal 3, the equation be {G(AB)^(1/n)+A}^n+{G(AB)^(1/n)+B}^n={G(AB)^(1/n)+A+B}^n When n be greater or equal 3 X^n+Y^n=Z^n A=Z-Y, B=Z-X {G(AB)^(1/n)+A}^n+{G(AB)^(1/n)+B}^n={G(AB)^(1/n)+A+B}^n G=F(A,B) One G=F(A,B) has the positive numbers but (n-1) each G=F(A,B) have the non positive numbers. 5-2. When A=B, G=F(A)=F(B). This be one positive irrational numbers G. G=F(A)={2^(n-1)/n+¡¦+2^(2/n)+2^(1/n)}A^(n-2)/n In {G(AB)^(1/n)+A}^n+{G(AB)^(1/n)+B}^n={G(AB)^(1/n)+A+B}^n When A=B 2{G+A^(n-2)/n}^n={G+2A^(n-2)/n}^n (n-1) each G=F(A) have the non positive irrational numbers but one G=F(A) has the positive irrational numbers. This be one positive irrational numbers G. G=F(A)={2^(n-1)/n+¡¦+2^(2/n)+2^(1/n)}A^(n-2)/n 5-3. One positive numbers G=F(A,B) and G(AB)^(1/n)=F(A,B)(AB)^(1/n) We can divide and multiply by 2{2^(n-1)/n+¡¦+2^(2/n)+2^(1/n)}{A^(n-2)/n+B^(n-2)/n} to one positive numbers G=F(A,B) Therefore q=2F(A,B)/{2^(n-1)/n+¡¦+2^(2/n)+2^(1/n)}{A^(n-2)/n+B^(n-2)/n} G=q[{2^(n-1)/n+¡¦+2^(2/n)+2^(1/n)}/2]{A^(n-2)/n+B^(n-2)/n} When A=B, q must become 1. And X+Y-Z=G(AB)^(1/n)= q[{2^(n-1)/n+¡¦+2^(2/n)+2^(1/n)}/2][{A^(n-1)B}^(1/n)+{AB^(n-1)}^(1/n)] 5-3-1. If the numbers of X, Y, Z be non zero natural numbers, the numbers of A, B must become non zero natural numbers. And in all the non zero natural numbers A, B, G(AB)^(1/n)=q[{2^(n-1)/n+¡¦+2^(2/n)+2^(1/n)}/2][{A^(n-1)B}^(1/n)+{AB^(n-1)}^(1/n)] must become the irrational numbers. So the numbers of X=G(AB)^(1/n)+A, Y=G(AB)^(1/n)+B, Z=G(AB)^(1/n)+A+B must become the irrational numbers. That be an apparent contradiction. Therefore the numbers of X, Y, Z can not become non zero natural numbers. 5-3-2. And if the numbers of X, Y, Z become non zero natural numbers by the non positive numbers G, then another non zero natural numbers A, B must come into existence. And another positive numbers G must come into existence. So the numbers of X=G(AB)^(1/n)+A, Y=G(AB)^(1/n)+B, Z=G(AB)^(1/n)+A+B become the irrational numbers by all the non zero natural numbers A, B and another positive numbers G. That be an apparent contradiction. Therefore the numbers of X, Y, Z can not become non zero natural numbers by the non positive numbers G. 5-4. Therefore when n be greater or equal 3, the equation X^n+Y^n=Z^n can not have non zero integer solutions. 6. Conclusion Consequently, in the equation X^n+Y^n=Z^n when n=1 and when n=2, the numbers of X, Y, Z can become non zero integers. But when n be greater or equal 3, the equation X^n+Y^n=Z^n can not have non zero integer solutions. End. References ParkBeumSoo. (2003). Yes we have no neutron. The armchair universe. Alexander Keewatin Dewdney : eclio. Parkyoungsuk. (1998). Out of there mind. Dennis Shasha. Cathy Lazere. Howard eves. Leewooyoung. (2003). Citation and References Mathematics : The science of patterns. Fermat s Last Theorem. Keith Devlin. Barry Cipra. (1996). What s happening in Mathematical Sciences. American Mathematical Society. Leejaeyul. (2005). appendix about FLT. X^n+Y^n=Z^n {X^(n/2)}^2+{Y^(n/2)}^2={Z^(n/2)}^2 A=Z^(n/2)-Y^(n/2), B=Z^(n/2)-X^(n/2) X^(n/2)=(2AB)^1/2+A, Y^(n/2)=(2AB)^1/2+B, Z^(n/2)=(2AB)^1/2+A+B X^(n/2)Y^(n/2)=3AB+(A+B)(2AB)^1/2 (XY)^n=2A^3B+2AB^3+13(AB)^2+6AB(A+B)(2AB)^1/2