Let f : A¡æB and g : C¡æD be functions. The product of f and g is the function defined as follows:<BR>[f£ªg](x,y)=(f(x),g(y)) for every (x,y)¡ôA X C<BR><BR>Prove that f*g is a function from A X C to B X D. <BR>Prove that if f and g are injective, then f*g is injective and if f and g are surjective, then f*g is surjective. <BR>Prove that ran[f*g]=(ranf)X(rang)<BR><BR>À½...ÀúÈñ °ú µ¿±âµéÀ» º¸´Ï±î ´Ù ¾î¼³ÇÁ°Ô?? Áõ¸íÀ» ÇÏ´õ±º¿ä..100Á¡ ¸¸Á¡¿¡ 70Á¡ Á¤µµ? Àü Á¦´ë·ÎµÈ ³í¸®ÀûÀÎ Áõ¸íÀ» ¿øÇϴµ¥ °¨À» Àß ¸øÀâ°Ú½À´Ï´Ù.<BR><BR>