<P>À̹ø¿¡ ¼ö¿Í ³í¸®¶ó´Â ±³¾ç°ú¸ñÀ» ¼±ÅÃÇؼ Èûµé¾î ÇÏ°íÀÖ´Â ¹®°ú»ýÀÔ´Ï´Ù.¤Ð </P> <P>·¹Æ÷Æ®¸¦ ÀÛ¼ºÇؾߵǴµ¥ ±Í³³¹ýÀ¸·Î µé¾î°¡´Ï µµÀúÈ÷ ¼Õµµ ¸øµÇ°Ú³×¿ä.¤Ð ¾î¶»°Ôµç µû¶ó Àâ¾Æº¸·Á°í Çصµ.. ±º´ë°¬´Ù¿À°í ¸· ÇÏ´Ùº¸´Ï ¼öÇÐÀ» ¼Õ¿¡¼ ³õÀºÁö°¡ 4³âÁ¤µµ¶ó.. Á¤¼®À» º¸¸é¼ Ǫ´Â°Íµµ ÇÑ°è°¡ ÀÖ°í.¤Ð¤Ð ¹æ¹ýÀ» °¡¸£ÃÄ Áֽøé Á×¾î¶ó ¿Ü¿öº¸°Ú½À´Ï´Ù.¤Ð</P> <P>ºÎŹµå¸³´Ï´Ù.</P> <P> </P> <P>(1) ¼öÇÐÀû ±Í³³¹ýÀ¸·Î ´ÙÀ½À» Áõ¸íÇÏ¿©¶ó.</P> <P><BR>(1) 1+3+5+¡¥¡¥¡¥+(2n-1) = n^2(n¡Ã1)</P> <P> </P> <P>(2) 1^3+2^3+3^3+¡¥¡¥¡¥+n^3=[n(n=1)/2]^2 (n¡Ã1)</P> <P> </P> <P>(3) a^n-1 = (a-1)(a^(n-1)+¡¥¡¥¡¥+1) (n¡Ã1)</P> <P> </P> <P>(2) ÀÓÀÇÀÇ Á¤¼öÀÇ ¼¼Á¦°öÀº µÎ Á¦°ö¼öÀÇ Â÷·Î¼ ³ªÅ¸³¾ ¼ö ÀÖÀ½À» º¸¿©¶ó</P> <P> </P> <P>(3) 4ÀÌ»óÀÇ Á¤¼ö n¿¡ ´ëÇÏ¿© n!>n^2ÀÌ°í, 6 ÀÌ»óÀÇ Á¤¼ö n¿¡ ´ëÇÏ¿© n!>n^3ÀÓÀ» º¸¿©¶ó</P> <P> </P> <P>(4) 1(1!)+2(2!)+3(3!)+¡¥¡¥¡¥+n(n!) = (n+1)!-1 ÀÓÀ» º¸¿©¶ó ´Ü, n¡Ã1ÀÌ´Ù.</P> <P> </P> <P>(5) ÀÌÇ×Á¤¸®¿¡ ÀÇÇϸé (a+b)^n = ¢²(r=0, n)nCr a^(n-r) b^rÀε¥, ¿©±â¼ nCr = n!/r!(n-r)!À» ÀÌÇ×°è¼ö¶ó ÇÑ´Ù. À̶§ nCr+nC(r-1) = (n+1)Cr (1¡Âr¡Ân) ÀÓÀ» Áõ¸íÇÏ¿©¶ó</P> <P> </P> <P>(6)2¡Âr¡Ân-2 (n¡Ã4)ÀÏ ¶§, ´ÙÀ½ÀÌ ¼º¸³ÇÔÀ» º¸¿©¶ó.</P> <P> nCr=(n-2)C(r-2) + 2(n-2)C(r-1) + (n-2)Cr</P> <P> </P> <P>(7)nCo-nC1+nC2-¡¥¡¥¡¥+(-1)^n nCn = 0</P>