´ÔÀº
ÀÔ´Ï´Ù.
¤ýÃѱ¸¸Å¾×
0
¿ø
¤ýÀû¸³±Ý
0
¿ø
¤ýÇÒÀÎÄíÆù
0
¿ø
¤ýÀå¹Ù±¸´Ï
0
°³
¤ýÀ§½Ã¸®½ºÆ®
0
°³
[GSP·Î º¸´Â-¼öÇÐÀº ½ÇÇèÀÌ´Ù]
29 ¸Þ³Ú¶ó¿ì½ºÀÇ Á¤¸®
¼öÇй®È¿ø
FILE :
29 ¸Þ³Ú¶ó¿ì½ºÀÇ Á¤¸®.gsp
(
4.1
KB)
Posted at 2015-04-16 11:17:08
<div class="h-10"></div><div class="tbody m-tcol-c" id="tbody"><p><br></p><p>ÀÌ ½Ç½ÀÀº Ã¥ '¼öÇÐÀº ½ÇÇèÀÌ´Ù'ÀÇ 29 ¹øÂ° ½ÇÇè '¸Þ³Ú¶ó¿ì½ºÀÇ Á¤¸®'¿Í °ü·ÃµÈ ³»¿ëÀÔ´Ï´Ù.</p><p><br></p><p>¸Þ³Ú¶ó¿ì½ºÀÇ Á¤¸®´Â ¾Æ·¡¿Í °°Àº »ï°¢Çü¿¡¼ RQP°¡ ÀÏÁ÷¼± »ó¿¡ ÀÖÀ¸¸é <img onLoad='miniSelfResize(contents_116,this); if(this.parentNode.tagName=="A"){this.onclick = "";}' name="cafeuserimg" id="userImg1728637" style="width: 88px; height: 24px;" src="http://upload.wikimedia.org/math/3/1/d/31da9238502dcb2bbe8e2847e9f32f78.png">¼º¸³ÇÑ´Ù´Â °ÍÀÔ´Ï´Ù. ¿Ö³ÄÇϸé Á÷¼± RP¿¡ ÆòÇàÇÑ Á÷¼± CD¸¦ ±×·Á¼ »ý°¢Çغ¸¸é <img onLoad='miniSelfResize(contents_116,this); if(this.parentNode.tagName=="A"){this.onclick = "";}' name="cafeuserimg" id="userImg7449759" style="width: 137px; height: 30px;" src="http://upload.wikimedia.org/math/6/0/c/60c78f034ef5ccd954693b7d363aba47.png">ÀÇ ºñ·Ê°ü°è°¡ ¼º¸³ÇϹǷΠºñÀ²ÀÌ ¼·Î »ó¼âµÇ¾î 1ÀÌ µÇ±â ¶§¹®ÀÔ´Ï´Ù. ¶Ç ±× ¿ªµµ ¼º¸³ÇÕ´Ï´Ù. (<a href="http://ko.wikipedia.org/wiki/%EB%A9%94%EB%84%AC%EB%9D%BC%EC%98%A4%EC%8A%A4%EC%9D%98_%EC%A0%95%EB%A6%AC" target="_blank">¸Þ³Ú¶ó¿ì½º Á¤¸®</a> ÂüÁ¶) GSP¸¦ ÀÌ¿ëÇÏ¿© ¸Þ³Ú¶ó¿ì½º Á¤¸®°¡ Ç×»ó ¼º¸³ÇÏ´ÂÁö È®ÀÎÇØ º¸°Ú½À´Ï´Ù.</p><p><br></p><p><a class="image" href="http://ko.wikipedia.org/wiki/%ED%8C%8C%EC%9D%BC:Menelaus%27_theorem.jpeg" target="_blank"><img onLoad='miniSelfResize(contents_116,this); if(this.parentNode.tagName=="A"){this.onclick = "";}' name="cafeuserimg" id="userImg7863174" style="width: 428px; height: 253px;" src="http://upload.wikimedia.org/wikipedia/ko/3/38/Menelaus%27_theorem.jpeg"></a></p><p><br></p><p>1. Á¡µµ±¸¸¦ ÀÌ¿ëÇÏ¿© »ï°¢ÇüÀÇ ²ÀÁöÁ¡ÀÌ µÉ Á¡ 3°³¸¦ Âï½À´Ï´Ù.</p><p><br></p><p><img onLoad='miniSelfResize(contents_116,this); if(this.parentNode.tagName=="A"){this.onclick = "";}' src="/shop/lib/meditor/../../data/editor/941d8fe0d4095850.png"></p><p><br></p><p><br></p><p>2. Á÷¼±µµ±¸¸¦ ÀÌ¿ëÇÏ¿© ¾Æ·¡¿Í °°ÀÌ Á÷¼±À» ±×¸³´Ï´Ù.</p><p><br></p><p><img onLoad='miniSelfResize(contents_116,this); if(this.parentNode.tagName=="A"){this.onclick = "";}' src="/shop/lib/meditor/../../data/editor/559de087c3503e88.png"></p><p><br></p><p><br></p><p>3. 2¿¡¼ ±×¸° ¼¼ Á÷¼±°ú ÆòÇàÇÏÁö ¾ÊÀº ÀÓÀÇÀÇ Á÷¼±µµ Çϳª ±×¸³´Ï´Ù.</p><p><br></p><p><img onLoad='miniSelfResize(contents_116,this); if(this.parentNode.tagName=="A"){this.onclick = "";}' src="/shop/lib/meditor/../../data/editor/b597cd003fa03f78.png"></p><p><br></p><p><br></p><p>4. Á¡µµ±¸¸¦ ÀÌ¿ëÇÏ¿© Á÷¼± l(ÁÖȲ»ö)°ú ³ª¸ÓÁö Á÷¼±ÀÇ ±³Á¡À» Âï¾îÁÝ´Ï´Ù.(Çò°¥¸®Áö ¾Êµµ·Ï Á÷¼± l¿¡ »öÀ» ÁÖ¾ú½À´Ï´Ù. ²À ÇÊ¿äÇÑ »çÇ×Àº ¾Æ´Õ´Ï´Ù.)</p><p><br></p><p><img onLoad='miniSelfResize(contents_116,this); if(this.parentNode.tagName=="A"){this.onclick = "";}' src="/shop/lib/meditor/../../data/editor/76d39a07c71ea23b.png"></p><p><br></p><p><br></p><p>5. ¼±ºÐ µµ±¸¸¦ ÀÌ¿ëÇÏ¿© ¼±ºÐ AB, ¼±ºÐ BC, ¼±ºÐ CA¸¦ ±×¸³´Ï´Ù.</p><p><br></p><p><img onLoad='miniSelfResize(contents_116,this); if(this.parentNode.tagName=="A"){this.onclick = "";}' src="/shop/lib/meditor/../../data/editor/8f4029bd0050f14f.png"></p><p><br></p><p><br></p><p>6. È»ìÇ¥µµ±¸·Î Á¡ A¿Í Á¡ D¸¦ ¼±ÅÃÇÑ µÚ 'ÃøÁ¤ - °Å¸®'¸¦ Ŭ¸¯ÇÕ´Ï´Ù.</p><p><br></p><p><img onLoad='miniSelfResize(contents_116,this); if(this.parentNode.tagName=="A"){this.onclick = "";}' src="/shop/lib/meditor/../../data/editor/c5b019e280049d2f.png"></p><p><br></p><p><br></p><p>7. °°Àº ¹æ½ÄÀ¸·Î (Á¡ D¿Í Á¡ B), (Á¡ B¿Í Á¡ E), (Á¡ E¿Í Á¡ C), (Á¡ C¿Í Á¡ F), (Á¡ F¿Í Á¡ A)ÀÇ °Å¸®µµ ÃøÁ¤ÇÕ´Ï´Ù.</p><p><br></p><p><img onLoad='miniSelfResize(contents_116,this); if(this.parentNode.tagName=="A"){this.onclick = "";}' src="/shop/lib/meditor/../../data/editor/bd96cf861e4b4878.png"></p><p><br></p><p><br></p><p>8. '¼ö - °è»ê'À» Ŭ¸¯ÇÕ´Ï´Ù.</p><p><br></p><p><img onLoad='miniSelfResize(contents_116,this); if(this.parentNode.tagName=="A"){this.onclick = "";}' src="/shop/lib/meditor/../../data/editor/c7a312fe8a7eded6.png"></p><p><br></p><p><br></p><p>9. ¾Æ·¡¿Í °°Àº ¼ö½ÄÀ» ÀÔ·ÂÇÑ µÚ 'È®ÀÎ'À» Ŭ¸¯ÇÕ´Ï´Ù. ÃøÁ¤°ªÀ» ÀÔ·ÂÇÒ ¶§¿¡´Â ÃøÁ¤°ª »óÀÚ(º¸¶ó»öºÎºÐ)¸¦ Ŭ¸¯ÇÏ¿© ÀÔ·ÂÇÕ´Ï´Ù.</p><p><br></p><p><img onLoad='miniSelfResize(contents_116,this); if(this.parentNode.tagName=="A"){this.onclick = "";}' src="/shop/lib/meditor/../../data/editor/647acc615cf2df9a.png"></p><p><br></p><p><br></p><p>10. Á¡ A, Á¡ B, Á¡ C¸¦ ¿òÁ÷¿©µµ °è»ê °á°ú´Â Ç×»ó 1ÀÌ µË´Ï´Ù.</p><p><br></p><p><img onLoad='miniSelfResize(contents_116,this); if(this.parentNode.tagName=="A"){this.onclick = "";}' src="/shop/lib/meditor/../../data/editor/c196eac19687e550.png"></p><p><br></p><p><br></p><p><br></p></div>
Total 68 Articles, 2 of 4 Pages
GSP
GSP 5.0 µû¶óÇϱâ
½Ç½À
GSP·Î º¸´Â-¼öÇÐÀº ½ÇÇèÀÌ´Ù
ÆÁ
48
[GSP·Î º¸´Â-¼öÇÐÀº ½ÇÇèÀÌ´Ù]
24 ¶õü½ºÅÍÀÇ ¹ýÄ¢
¼öÇй®È¿ø
737
47
[GSP·Î º¸´Â-¼öÇÐÀº ½ÇÇèÀÌ´Ù]
33 °î·ü¹Ý°æÀÇ ÃøÁ¤
¼öÇй®È¿ø
18990
46
[GSP·Î º¸´Â-¼öÇÐÀº ½ÇÇèÀÌ´Ù]
26 Àα¸À̵¿À¸·Î Çà·ÄÀ» ¾Ë´Ù
¼öÇй®È¿ø
952
45
[GSP·Î º¸´Â-¼öÇÐÀº ½ÇÇèÀÌ´Ù]
16 ¸¶¹ý¾È°æ
¼öÇй®È¿ø
1222
44
[GSP·Î º¸´Â-¼öÇÐÀº ½ÇÇèÀÌ´Ù]
37 ¿ø»Ô °î¼±
¼öÇй®È¿ø
3411
43
[GSP·Î º¸´Â-¼öÇÐÀº ½ÇÇèÀÌ´Ù]
06 ¿øÅëÀÇ ±¸¸ÛÀ¸·Î ¹°ÀÌ ºüÁ®³ª¿À´Â ¸ð¾çÀº?
¼öÇй®È¿ø
1375
42
[GSP·Î º¸´Â-¼öÇÐÀº ½ÇÇèÀÌ´Ù]
29 ¸Þ³Ú¶ó¿ì½ºÀÇ Á¤¸®
¼öÇй®È¿ø
1701
41
[GSP·Î º¸´Â-¼öÇÐÀº ½ÇÇèÀÌ´Ù]
39 °ãÄ¡´Â Á¡À» ±¸ÇÏ´Ù
¼öÇй®È¿ø
768
40
[½Ç½À]
GSP¸¦ ÀÌ¿ëÇÏ¿© ÄÚÈå ´«¼ÛÀÌ ±×¸®±â
¼öÇй®È¿ø
1138
39
[½Ç½À]
GSP¸¦ ÀÌ¿ëÇÏ¿© 3Â÷¿ø Á¤ÆÈ¸éü ±×¸®±â
¼öÇй®È¿ø
571
38
[ÆÁ]
»ç¿ëÀÚ µµ±¸ Æú´õ
¼öÇй®È¿ø
694
37
[ÆÁ]
»ç¿ëÀÚ µµ±¸ ¸¸µé±â(»ç°¢ÇüÀÇ ¹«°ÔÁß½É)
¼öÇй®È¿ø
736
36
[GSP 5.0 µû¶óÇϱâ]
3Â÷¿ø ½Ã¾îÇɽºÅ° »ç¸éü
¼öÇй®È¿ø
916
35
[½Ç½À]
GSP¸¦ ÀÌ¿ëÇÑ ½Ö°î¼±ÀÇ ÃÊÁ¡¹Ý»ç
¼öÇй®È¿ø
635
34
[½Ç½À]
GSP¸¦ ÀÌ¿ëÇÑ Å¸¿øÀÇ ÃÊÁ¡ ¹Ý»ç
¼öÇй®È¿ø
690
33
[½Ç½À]
GSP¸¦ ÀÌ¿ëÇÏ¿© ÇÏÀÌÆ÷Æ®·ÎÄÚÀ̵å¿Í ¿¡ÇÇÆ®·ÎÄÚÀÌµå ±×¸®±â
¼öÇй®È¿ø
672
32
[GSP 5.0 µû¶óÇϱâ]
GSP¸¦ ÀÌ¿ëÇÏ¿© º£Áö¿¡ °î¼± ±×¸®±â
¼öÇй®È¿ø
732
31
[GSP 5.0 µû¶óÇϱâ]
´ÜÀ§¿ø°ú »ï°¢ÇÔ¼ö
¼öÇй®È¿ø
1702
30
[½Ç½À]
»ï°¢ÇüÀÇ ¿À½É
¼öÇй®È¿ø
792
29
[½Ç½À]
GSP¸¦ ÀÌ¿ëÇÏ¿© Ȳ±Ý³ª¼± ±×¸®±â
¼öÇй®È¿ø
803
[1]
2
[3]
[4]
À̸§
Á¦¸ñ
³»¿ë
Copyright ¨Ï
shop.mathlove.kr
All right reserved